CCAAT/enhancer-binding protein homologous protein (CHOP) regulates osteoblast differentiation.
نویسندگان
چکیده
Differentiation of committed osteoblasts is controlled by complex activities involving signal transduction and gene expression, and Runx2 and Osterix function as master regulators for this process. Recently, CCAAT/enhancer-binding proteins (C/EBPs) have been reported to regulate osteogenesis in addition to adipogenesis. However, the roles of C/EBP transcription factors in the control of osteoblast differentiation have yet to be fully elucidated. Here we show that C/EBP homologous protein (CHOP; also known as C/EBPzeta) is expressed in bone as well as in mesenchymal progenitors and primary osteoblasts. Overexpression of CHOP reduces alkaline phosphatase activity in primary osteoblasts and suppresses the formation of calcified bone nodules. CHOP-deficient osteoblasts differentiate more strongly than their wild-type counterparts, suggesting that endogenous CHOP plays an important role in the inhibition of osteoblast differentiation. Furthermore, endogenous CHOP induces differentiation of calvarial osteoblasts upon bone morphogenetic protein (BMP) treatment. CHOP forms heterodimers with C/EBPbeta and inhibits the DNA-binding activity as well as Runx2-binding activity of C/EBPbeta, leading to inhibition of osteocalcin gene transcription. These findings indicate that CHOP acts as a dominant-negative inhibitor of C/EBPbeta and prevents osteoblast differentiation but promotes BMP signaling in a cell-type-dependent manner. Thus, endogenous CHOP may have dual roles in regulating osteoblast differentiation and bone formation.
منابع مشابه
The Transcription Factor EB (TFEB) Regulates Osteoblast Differentiation Through ATF4/CHOP-Dependent Pathway.
Osteoblasts are bone-forming cells that produce large amounts of collagen type I and various bone matrix proteins. Although osteoblast differentiation is highly regulated by various factors, it remains unknown whether lysosomes are directly involved in osteoblast differentiation. Here, we demonstrate the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, modulates osteo...
متن کاملA CCAAT/enhancer binding protein beta isoform, liver-enriched inhibitory protein, regulates commitment of osteoblasts and adipocytes.
Although both osteoblasts and adipocytes have a common origin, i.e., mesenchymal cells, the molecular mechanisms that define the direction of two different lineages are presently unknown. In this study, we investigated the role of a transcription factor, CCAAT/enhancer binding protein beta (C/EBPbeta), and its isoform in the regulation of balance between osteoblast and adipocyte differentiation...
متن کاملRegulation of CCAAT/Enhancer-binding Protein Homologous Protein (CHOP) Expression by Interleukin-1 in Pancreatic Cells*
Apoptosis contributes to immune-mediated pancreatic cell destruction in type I diabetes. Exposure of cells to interleukin-1 (IL-1 ) causes endoplasmic reticulum stress and activates proapoptotic networks. Here, we show that nuclear factor B (NFB) and mitogen-activated protein kinase (MAPK) signaling pathways regulate the expression of CCAAT/enhancer-binding protein homologous protein (CHOP), wh...
متن کاملSubtype-selective interaction with the transcription factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) regulates cell surface expression of GABA(B) receptors.
The metabotropic gamma-aminobutyric acid, type B (GABA(B)) receptors mediate the slow component of GABAergic transmission in the brain. Functional GABA(B) receptors are heterodimers of the two subunits GABA(B1) and GABA(B2), of which GABA(B1) exists in two main isoforms, GABA(B1a) and GABA(B1b). The significance of the structural heterogeneity of GABA(B) receptors, the mechanism leading to thei...
متن کاملIncreased TNFalpha and CCAAT/enhancer-binding protein homologous protein with aging predispose preadipocytes to resist adipogenesis.
Fat depot sizes peak in middle age but decrease by advanced old age. This phenomenon is associated with ectopic fat deposition, decreased adipocyte size, impaired differentiation of preadipocytes into fat cells, decreased adipogenic transcription factor expression, and increased fat tissue inflammatory cytokine generation. To define the mechanisms contributing to impaired adipogenesis with agin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 26 16 شماره
صفحات -
تاریخ انتشار 2006